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Abstract—Hough Transform (H.T.) is a classical tool for
multiple alignment detection in image processing, based on
the property that Aligned Points are transformed into Inter-
secting Curves (APIC). Among the alternative transforms
which possess the APIC property, one of the most interest-
ing is Polar Transform (P.T.) which exchanges a point (a,b)
and the straight line with equation ax + by = 1. This trans-
form represents classical duality between a pole and its polar
line w.r. to the unit circle. Another property common to
both H.T. and P.T. is the correspondence between shapes’
Boundary Length and connected Areas (BLA property), ei-
ther direct or compensated by a weight function, allowing
an efficient measure of these lengthes on a digital screen.
P.T. is shown to be connected to Projective and Integral
(or Stochastic) Geometry with an important role given to a
weight function 1/d3.

I. Introduction

This paper is motivated by a long practise in image
processing especially in the domain of line detection and
length calculation. Instead of using ”ad hoc” ameliorations
of Hough Transform (H.T.), we have developed alterna-
tive transforms, [1],[2], in connection with other geometri-
cal tools. One of them is Polar Transform (P.T.), a version
of point/line duality in the plane, is especially important
(P.T. should not be confused with the so-named ”straight
line Hough Transform”). This paper shows similarity as-
pects between H.T. and P.T., and the connection of P.T.
with projective and integral (or stochastic) geometry.
In a first part, a family of measures on sets of lines is

introduced. Then, different definitions of H.T. for points
and shapes are given. In a third part, P.T. is introduced.
Both transforms are shown to possess similar ”APIC” and
”BLA” properties (to be defined later).

II. Measures on sets of lines

Let LP be the set of lines intersecting a set of points P
in the plane (usually, P is a convex ”shape”). For example,
LABC is the set of straight lines which intersect a triangle
ABC, L{A} is the pencil of lines passing through point A.
Let us denote LA,BC = L(AB) ∩ L(AC) which is the set

of lines separating A from B and C. We have
LABC = LBC,A ∪ LCA,B ∪ LAB,C ∪ P (1)
(disjoint union, with P = L{A} ∪ L{B} ∪ L{C}).
Such set can be given a measure such that µ(L{A}) = 0

for pencils of lines. As a consequence of (1):
µ(LABC) = µ(LBC,A) + µ(LCA,B) + µ(LAB,C) (2)
If measure µ is such that : µ(LBC,A) = b+ c − a (3)
(2) becomes :
µ(LBC,A) = (b+ c − a) + (c+ a − b) + (a+ b − c)

i.e., µ(LABC) = 2(a+ b+ c) (4)
Thus, the measure of a set of lines which intersects a tri-

angular shape is the (double of the) length of its boundary.
This property has a wider application range: it remains
true for all convex polygons, and then, by continuity argu-
ments, to almost any convex shape S. In the case where
µ(S) is connected to the area (or compensated area) of S,
one will say that it has the Boundary Length vs. Area
(BLA) property.

Remark : (3) is fundamental because it expresses the
”excess” in triangular equality: b+ c ≥ a.

III. Classical H.T.

A straightforward definition of H.T. is: to a point P0
with polar coordinates (θ0, p0) in the original plane, is
associated the curve with equation
p = p0cos(θ − θ0) (5)
This sine curve is drawn in a special ”representation

strip” RS = [0, 2π) × (−∞,+∞) with (θ, p) considered as
rectangular (cartesian) coordinates (Fig. 1a). This defini-
tion permits a straightforward proof of the correspondence
between Aligned Points and Intersecting Curves (APIC
property).
But the definition above has to be enlarged as follows for

a better understanding. Let ∆θ,p be the straight line with
equation x cos(θ) + y sin(θ) − p = 0. We consider ∆θ,p as
a point in RS. Let us consider a fixed point P0 (x0, y0) =
(p0 cos(θ0), p0 sin(θ0)); A line ∆θ,p contains this point if
and only if p0 cos(θ0) cos(θ) + p0 sin(θ0) sin(θ)− p = 0 : we
are back to definition (5). In other words, the set of points
of the curve with equation (5) represents the set of lines
belonging to the pencil L{P0}.

Remark : H.T. is redundant because ∆θ+π,p = ∆θ,−p.
In a natural way, the H.T. of a ”shape” S (notation

HT(S)) is the set of straight lines Dθ,p intersecting S.
The measure µ(S) is, in a plain manner, the area of set

HT(S). It is easy to show that this area is displacement-
invariant (Fig 1, 2). The gray-colored set of points rep-
resents the set of lines intersecting both line segment a1b1
and line segment c1d1 (note the natural redundancy: the
two gray ”quadrilaterals” represent the same set of straight
lines).
We are now able to explain what is the Boundary Length

vs. Area (BLA) property. Indeed, property (4) above is
easy to establish. Consider Fig. 3. The area representing the
set of lines LABC in the strip RS is obtained by integration
of the ”shadows” of the projection of line segments AB,
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BC and CA on a turning axis: each segment of length L

contributes twice, by an amount 2L
∫ 2π

0 |cos(θ)| dθ = 4L
; in this way, we get twice the looked for area, 2µ(S) =
4(a+ b+ c) (see (4)).

Fig. 1. Fig. 2.

Fig. 3. Fig. 4.

IV. Polar Transform (P.T.)

Fig. 5.

By definition, P.T. exchanges point (a,b), called a pole,
and straight line with equation ax + by = 1, called the
polar line associated to the given pole, and vice versa. Let
S be a certain set of lines; let us denote by SOP (S) the
Set Of Poles of the lines of S.
It is easy to check that if all the lines of S pass through

a same point A (Fig. 5), SOP (S) has all its points aligned
(on a line which is the polar line of A): thus, P.T. verifies
the APIC property.
A particular case (Fig. 5): if Q is a (convex) quadri-

lateral, SOP (LQ) is either a quadrilateral in the general
case or is made of two unbounded polygonal components if
certain lines of S pass through the origin.
For a general shape P , the area of SOP (LP ) depends on

the location of P in the plane (Fig. 7): the farthest from

Fig. 6.

the origin, the smallest the area. In an unexpected way,
there is a simple compensating weight function 1/D3 as we
are going to prove it: in this way, we will have obtained
the BLA correspondence for P.T. as we had it for H.T.
In order to obtain this 1/D3 weight, we will use projec-

tive geometry. Let us recall that, being given a 3×3 matrix
M = (mij), the projective function (x′, y′) = PM (x, y) as-
sociated to M is defined by:

x′ =
N1

D
, y′ =

N2

D
with


 N1

N2
D


 =


 m11x+m12y +m13

m21x+m22y +m23
m31x+m32y +m33




Lemma : det
[

∂x′/∂x ∂y′/∂x
∂x′/∂y ∂y′/∂y

]
= det(M)/D3.

Proof left to the reader. Recall here the geometrical
meaning of this jacobian: it is equal to the ratio of elemen-
tary areas.
Let us now consider two ”small” line segments (see Fig. 7):
D1+ds1

−→
V1 and D2+ds2

−→
V2 with points Dk (xk, yk), unitary

vectors Vk = (ak, bk) and µk = dsk (k = 1, 2). Let S be the
set of straight lines intersecting both line segment, whose
poles have the following coordinates:

a = 1
δ [(y1 + µ1b1) − (y2 + µ2b2)]

b = 1
δ [(x2 + µ2a2) − (x1 + µ1a1)]

where δ = det
[
x1 + µ1a1 x2 + µ2a2
y1 + µ1b1 y2 + µ2b2

]

We observe that (a, b) is a projective function of µ1 and
µ2, because the second order infinitesimal µ1µ2 term dis-
appears. Using now the lemma and a certain factorization,
the set SOP (S) of all poles associated to lines which hit
both line segments (which is an infinitesimal quadrilateral,
as seen before) has the following area:

dA = ds1ds2

det
[
a1 x2 − x1
b1 y2 − y1

]
det

[
a2 x1 − x2
b2 y1 − y2

]

det
[
x1 x2
y1 y2

]3

This formula can be written in this way:
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dA = ds1ds2
det

[−−−→
D1D2,

−→
V1

]
det

[−−−→
D1D2,

−→
V2

]

det
[−−−→
OD1,

−−→
OD2

]3 (6)

Integration of (6) gives, for a general set of lines S = LP

intersecting a shape P :

area(SOP (LP )) =
∫ ∫

∂P×∂P

ds1ds2
sinα1 sinα2

d
= L(∂P )(7)

where d = ds1,s2 =
∥∥∥−−−→
D1D2

∥∥∥, αk = angle(−−−→
D1D2,

−→
Vk), and

sk = curvilinear abscissa of Dk (k = 1, 2) on the boundary
∂P of the shape.
The second equality in formula (7) is a classical expres-

sion in Integral (Stochastic) Geometry [3] for the length of
the boundary ∂P , the ”best” displacement-invariant result
that could be obtained...

Fig. 7.

Fig. 8.

Fig. 9.

Let us apply formula (7). Fig. 9 represents a triangle T =
A1A2A3 with sides’ lengthes a, b, c. Let A′

2 (resp. A′
3) the

points where a generic straight line intersects A1A2 (resp.
A1A3). Let a1 = A′

2A
′
3, a2 = A1A

′
3, a3 = A1A

′
2. Using

classical relationships:

sinα1

a1
=

sinα2

a2
=

sinα3

a3
and a2

1 = a2
2 + a2

3 − 2a2a3 cosα1

formula (7) gives :

area (SOP (P )) =
∫ b

a2=0

∫ c

a3=0

1
a1

sinα2 sinα3da2da3

= (sin a1)
2
∫ b

a2=0

∫ c

a3=0

a2a3

a3
1

da2da3

= (sin a1)
2
∫ b

a2=0

∫ c

a3=0

a2a3

(a2
2 + a2

3 − 2a2a3 cosα1)
3/2 da2da3

Fig. 10.

yielding: area (SOP (S)) = b+ c − a (property (3)): we
have the same displacement invariant measure. Let us end
with a particular application: consider a (convex) polygon
with n sides; the set S of lines intersecting the quadrilateral
is partitioned (up to zero-measure sets) into n(n−1)

2 ”tiles”,
each tile corresponding to a pairing between two sides of
the quadrilateral (Fig. 10).

Remark : The ”envelope” in Fig. 10 is inscribed into an
hyperbola because the initial convex polygon is inscribed
into an ellipse; this is one of the interesting properties of
P.T.: the images of conic curves are conic curves (seen in
a dual way: from a tangentially-defined curve to a point-
defined curve).

V. Conclusion

This paper has shown that H.T. and P.T. share similar
properties: APIC and BLA, with a 1/d3 weight in the case
of P.T. The superiority of P.T. lies in the fact that it al-
lows more connections with other domains of mathematics,
especially with projective and integral geometry, but also
Legendre Transform, etc. Moreover, all these connections
can be easily extended to 3D.
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