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ABSTRACT

Hough Transform, an important tool in image processing, does not use the analytical or géomeirical properties of
its basic objects, sine curves. Their replacement by other curves, namely circles, has led us to the discovery and
the autonomous study of two families of transforms, named Circle and Envelope Transforms. These transforms,
internii to the plane of study, are divided into three classes: parabolic (studied in detail), elliptic and hyperbolic,
in connection with the Euclidean and the two non-Euclidean geometries. They are shown to be equivalent to Hough
Transform. Three "classical geometry” transforms interplay with Envelope Transforms: Reciprocal Polar Transform,
Inversion Transform and Pedal Transform. A unified view is brought by the introduction of the "space of circles”
equipped with a special quadratic form. This set of transforms can be applied successfully to conic curves in view
of their characterization and detection. Almost every concept in this model is generalizable to 3 dimensions in a
straightlorward manner. Generalization is also promising for grey-level images in the direction of Radon Transform.

Keywords: Image processing, Hough Transform, Geometry, Envelopes, Pedal curves, Conic curves, Inversxun,
Reciprocal Polar Transform, Quadratic forms.

1. Introduction

Image Processing uses Hough Transform (shortened in "H'T.”: see the basic definitions in the Appendix) for the.
detection of (multiple) alignment. It has been enlarged, often on an "ad hec” basis, as a tool in curve recognition,
especially conic curves retrieval. .

H.T. is a point-to-curve transform exchanging alignment and intersection, or, in a practical context, apprezimate
alignment in the original {z,y} cartesian coordinates space ane curves clustering in s specific (0, p) polar coordinates
plane.

H.T. uses sine curves. But neither their (rich) analytical properties, nor their (poor) geometrical properties are
5 F 4

Thcpmbmofthispaperistoexhibitthmenewtypesoftransforms,mchonsequivalenttoH.T.,withsine
curves replaced by circles (ar by straight lines). These transforms are shown to be strongly connected with Pedal
Transform, Inversion Transform and Reciprocal Polar Transform.

The different types can be united in & common theoretical framework, the "space of circles”.

Thsmmnfeat-xesoftheaetransformsmstudxed,togethermhsome "classical geametry” recalls needed to
understand them. A more detailed presentation can be found in 1.

* Although this paper is thmry—onented we give a concrete application to a general-purpose curve enhancement
alsonthm.
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2. Pedal, Circle and Envelope Transforms

-We advise to consult the Appendix in order to have an idea about different tools (Pedal transform, Polarity, -
R.P.T., Inversion} used in this study. : A

Let us assume that an origin O and an orthonormal basis have been fixed in the Euclidean piane.

Let M = (a,b) a point in this plane.

- be the circle with equation: 22+ —ax~by=0 (diameter OM; center in (c/2,/2)
“*1 Ax  be the straight line with equation: oz +by =1 o

Remarks:
1} Ay and 3, are exchanged by Inversion I.
2\ Ay is the polar line of point M.

Let y be a closed curve, assumed smooth (a C? differentiability is convenient),

Definition: The Pedal Transform of ¥ (denoted 7} is the locus of the projection of O on the tangent Jines to .

For a given arientation #, any straight line Ly, which intersects vy belongs to a strip with "support lines” Lg.p,and
Loz, with py Sp < po.

Property: Let By be the bundle of lines intersecting . The associated set A(B,) (see Appendix) i.e., the region
swept by all circles 3-,, when M is the generic point of curve +, and  a convex curve, is the interior of its Pedal
Transform 7.

This set will be called the "Circle Transform” of -. .

Even if curve v is ill-known, for example known by scattered pixels (see Fig. 5), the border of its Circle Transform
looks rather precisely outlined. Why is it so? Because this border is more than a simple border; it is the (practical)
envelope of circles 3.

Here is & new notion which, in fact, enlarges the range of Pedal Transform:

We define the Envelope Transform (E.T.) of a curve as the envelope 7 of circles ~,, when M varies on this
curve, when this envelope exists. W

Fig. la: A closed convex curve -y and its Pedal Transform {P. T.) 7.

Fig. 1b: Circies Zy (with diameter OM, M € v) "sweep” the interior of the P. T., generating the
Circle Transfprm (C.T.). The envelope of these circies (Envelope Transform) is exactly the.
P.T. (see Proposition 1}.



3. Envelopes, Inversion and R.P.T.
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on curve y ¥
P . Deﬁniﬁon// curve S\

: . Ay Fav. Rec. Pol
2 Inv. Transf Transf.
Env.l Env. / \
C A e—— Inv. P
P s § T Y
Inv. Pedal Tr. : RPT.
Fig. 2: If M is the generic point of a curve v,  Fig. 3: (linked to Fig. 2 and to prop. 1). From this -
one obtains, by envelope processes, either the  diagram, an enhancement algorithm (curved arrow)
Pedal Tr. ¥ (see prop. 1} or the R.P.T. ¥ can be built with the following steps (1} Env. Transf.

of 77 (see the definition: indeed A is the polar  (2) Inversion (3) R.P.T.; a convenient threshold and
line of M); by "transfer”, § and 7 are, as well, some dilation steps are needed beiween steps (1) and
exchanged by Inversion I. (2). See Fig. 5.

Proposition 1: (equivalent to Fig. 3) The Pedal Transform ¥ of a smooth curve y can be obtained:

» By its definition (locus of the projections of the origin on the tangent lines).
o As Envelope Transform {envelope of circles 3~ ,,, M € 7).
o As Inverse Transform of the Reciprocal Polar Transform % of -y (in closed form: § = I{(}).

. -

Pruaf: = 2 .
a) Let us give an explickt parametric representation of 5. We take the notations of Fig. L.
If 7% designates the outward normal unit vector in point M; to curve 7, we have:
- —_— 1w i . 2 "2
OP, = (OM; - W) = ﬁ(y;, —z,) with w=zgy, -z and nP= (::;) + (y,) ’

b} The generic point of a circle envelope is, by definition, the intersection of two "infinitely close circles”, L.e., the
solution of the following system (where notation ¥, a, 15 used, in an exceptional way, to designate the left hand side
of the corresponding circle's equation):

A

-

T, =0 T =0 {EM =0
. E—3 - .
{ Distoin =0 Z—““"ﬁ%—zﬁ =0 h 2 (Xw)=0 -
' _ PP —nz—yy=0
Thus: (z,y) € 7 for parameter value ¢ - { Lz 4yy=0. (1)

1t means that (z,y) € 3, NN, where N, is the line passing through the origin and orthogonal to the tangent
to curve 7y in point (Z;,3:). It suffices now to invoke the fundamental property of the diameter of a circle regarding
right angles to establish thet the solution of system (1) is exactly tho geaeric point of the Pedal Transform.
) ¢) By definition of the Inverse Transform (11), and thanks to the parametric description of the R.P.T. given in
the Appendix (10), the generic point of I{7} has the following coordinates:



We will consider only three cases ¢ = ~1, 0, 1, which, in fact, represent all cases up to ¢ unit chenge. The
characteristic properties of circles Y, are as follows: ;

e=1 Hyperbolic Y.1s is orthogonal to unit circle.
c=0 Parabalic {or Buclidean) Y_,, has OM for its diameter (treated in parts 2,3,4)
c¢=-1 Elliptic 3. intersects unit circle on a diameter of unit circle.

The terms Hyperbolic, Parabolic and Elliptic are classically given for models of plane geometry.

TFor a fixed c, one can define, as it has been done for the case ¢ =0, a notion of Circle Transform and a notion of
Envelope Transform (see Fig. 7a and 7b). .

Uit
Circle

Fig. 7a: Elliptical case (¢ = ~1). The Circle Transf. Fig. 7b: Hyperbolic case {¢ = 1}. The Circle and
of segment MN. It is still a pencil of circles likein ~ Envelope Transforms of an ellipse. In this case,
Fig. 6c; but here, circles 3, intersect unit circle all circles 3°,, are orthogonal to the unit circle.

on a diameter of unit circle. As a consequence, the Env. Transf. is globally
" It can be seen as a "wrapping” of Fig. 6b invariant par standard inversion I. Hence, all the -
(interval (—7] is "wrapped” on the unit circle). information is in the unit disk: it is bounded.

We will not develope their specific properties, somewhat different from the now known case ¢ = 0. ]
Only one of the most important features, common to all cases, will be treated: the fact that circles can be replaced

at any moment by straight lines.
Indeed, let J. be the point-to-point transform, generalizing inversion I, defined by:

A
X=(zy = i ’“( el ]
XIF+e ™ \aTtgi e’ Fapirc)

Remark: I ¢ < 0 (elliptic case), 2 point which belongs to the disk [|X]} £ +/—c has no image by Je.

Proposition 2: YM : J, exchanges Ty and Ay,
Proof:



az+b;

—_ = J
) +y2 +e 1 = c(z1y) € All

(z¥)eZy & E+i-az—byt+e=0 &
a

Remark: It can be proved that the Circle (tesp Envelope) Transform with parameter ¢ # 0 generat
(resp. curves) that are (globally) invariant by inversion I. Hence, it suffices to know what "lmppens" in
disk; it is why we can call "bounded” the C. Transf. and E. Transf. for ¢ # 0.

Here is now a global scheme which "encapsulates™ the different cases into a single one.

6. The space of circles

- Parabolic =
N i Elliptic

2
Unit
circle

Fig. 8: The space of circles {2 and the three geometries.

The easiest beginning reference for this part is %, a nice, slightly old-fashioned, little book.

A certain value of ¢ is fixed. ;x
l‘é\.
The general equation of circle EM,:: with center (a/2,5/2) and diameter d is :

with parameters a,b,c: 2 4¢* — o — by+c=0
with parameters a,b,d:  (z —a/2)? + (y — b/2)% = (d/2)?
The different parameters are linked by relationship:

do=d®+ 5 —

It is parametrization (a, b; ¢} that will be kept.
The set {2 of {plane) circles appears as a 3D space in which can be placed a rich orthogonality structure.



We will uwse the term "circle ¢ = (a,b,¢)” by an identification of the geometrical object and its parame.
ter/coordinate representation. :

One can imagine that above and below each point of the plane, a vertical "fiber” exists, and that a (plane) circle
with center (a/2,b/2) and coefficient ¢, instead of being drawn on the plane, is drawn on the harizontal plane at
altitude c. For example, at altitude ¢ = 0, one finds circles passing through the origin. For positive values of ¢, no
circle can be centered inside the disk with radius /2.

It forbids the interior of a certain paraboloid (see remark 2 below).

Le*, us introduce a "natural® quadratic form on {} in connection with circles’ angles.
Consider Fig. 9. If circles with centers M = (a/2,b/2) and M’ = (a'/2,b'/2) and respective diameters d and ¢'
intersect in J with an angle o, we have, considering trisngle MJM' (with § = distance MM'):"

48% = &% + & — 2dd’ cos(7 - a) @)
ie, {a~a' P+ (d—b)* =+ d* + 2dd cos{ar)

Expanding last relationship and using (3), we obtain:
(o) < B oow =W | s

; s C s _ Xx-x

i.e., by analogy with relationship cos(a} = =X

__Bla) . B(o,0) = 2ct'+c't)—aa’—bV :

cns{rx)—-‘/q_(a_)m with { £=0(0) = 4c—a?- B (6a)

where £, t’ confer homogeneity (see 3 about homogeneous coordinates) although we will take here t = t' =1
(points at finite distance).

Remarks: .

1) B is a generalized scalsr product (bilinear form) and Q a generalized norm {quadratic form).

2) The isotropic set (set of vectors o such that Q{g) = 0 is a paraboloid I defined by

dc=a®+b* ' (T

Points outside II represent (in a unique way) a circle of the plane.

Point-circles are on paraboleid II.
Points inside II represent no circle.

'Using (5) orthogonality condition cos(a) = 0 for twe circles can be expressed as:

ag' + ' = 2(c+¢) : (8)

Remark: Referring to (4), if the second circle is a point-circle (@' = 0) with its center on the first circle (§ = d/2),
relationship {4) is clearly verified; we will say that

circleZpassas through point A = Z: is orthogonal to point-circle {A}.

In other words, every circle is orthogonal to each of its points, considered as point-circles.



By analogy with the 2D polarity defined in the Appendix, the set of all circles o = (g, b, ¢) orthogonal to a fou
circle oo = (ao, bo, co) constitutes the polar plane F = (g, bo, co)™ (see (8)) with equation: aag+bbg —2(e+ey) =
or ; :

1
¢ = 5(aag + bbo) — o

o

(see Fig. 10)

Polar
plane of o

Tig. % An angle between curves means the angle F;g 10: Polarity in space of circles {2.
between tangent vectors. V and V' at the common

point. The angle betiween JM and JM' 57 —a,
because of orthogonality of radius and tangent.

The general connection with Hough Transform is now easy to establish. We fix co.

Let C = [—#,7) x R be the vertical unit eylinder built above unit circle (a = cos(f), b =sin(8)) {Fig. 10).'}'
Now, consider a point My with cartesian coordinates (60, by) and polar coordinates 180, Po)-

The circle T, = L1, = (00, bo, o), considered as a point in space (1, is associated, in a bijective way, to th.
polar plane of Mg: Pay,-

In this way, circle } ., is associated to the intersection curve of cylinder C with plane Py, which is an ellipse.
The equation of this ellipse in cylindrical coordinates is, using (9): '

2
£

1
e= E(po cos(fg) cos(0) + po sin{fo) sin(6)} — co
i.e., the equation of the image of circle ZM i=: e= %po cos(@ — 8g) — co
L]

1t suffice now, co being fixed, to take the following affine correspondence between the ordinates in cylinde:
C = [-x,7) x R and Hough space [—7,7) x R:



ptnemlpocy
to obtain for the image of circle 3y, , the sine curve with equation

= po cos(f — fo)
sssociated by H.T. to a point with polar coordinates [pg,fo]; one might think of this aperation as an " unrolling”
of the cylinder giving Hough plane. 1

All the process can, of course, be extended to Hough Transforms of shapes (to an area, "swept” by sine curves in
a domain, correspond an ares "swept” by circles in the other domain...) in a diffeomorphic way.

7. Conclusion and Perspectives

H.T. will not be expelled scon from its important place in image processing!
But the Envelope Transforms that have been introduced can compete seriously with it for certain applications.

These new transforms are more natural, because they do not need a special space of representation; moreover,
except for one case (¢ = 0), they are bounded (with the meaning that all the information is present inside unit disk).

But the most importagt thing is that this new approach escapes from the "all with sine functions” that looks an
intrinsical limitation of H.T.

The "geometric spirit” has provided a breakthrough, with powerful (and relatively simple) tools which are not
only theoretical but are adequate on a grid with an evident enhancement of information by the envelope process.

There are many possible research directions with these new tools. '

The most evidently important are the gray level extension and the 3D extension.

It is possible to extend H.T. to gray levels in a natural extension.

Almost every concept in this study has a 3D analog. For example the Envelope Transforms generate, inNSD,
important surfaces pames Dupin cyclides or generalized cyclides which are now quite common in Computer Assisted
Design.

-

8. Appendix??*

8.1. The Pedal Transform

The equation of a planar straight line L can be written under the form:

t

rcosl +ysinf=p

" (8,p) being the polar coordinates of H, the (orthogonal) projection of Q on line L. .
Thus, line L is clearly completely determined by point H i.e., by its coordinates (8,p); this dependance will be
reflected into the following notations: L = Ly = Lgp.
Thus, to a "class” C of straight lines, can be associated the set A(C") of the projections of O on the lines of C,
with the evident property A{ U Cy) = U A(Cy)
kEK ke



g

Let S be a set of points; let Bg be the "bundle” of lines passing through (st least a point _of) 8. .
A particular case: the associated set A(Bas) to the bundle of lines By (= B{u) passing through point M isthe
circle with diameter OM. We can now returs to the general case A(Bg) = A( U By) = U A(Bas), which means _'

MeS MeS :
that the bundle of lines passing through set S, can be associsted to the union of all circles with diameter OM, M
, being the generic point of set 3. e

8.2. Polarity

-

We present here the concept of polerity with respect to the unit circle (this notion is much more general, but we )
do not need this degree of generality).
Let us consider the correspondence M «— Ay which associates to point (a,b) the line Ay with equation '
oz + by = 1. The couple M / Ay is called the couple pole / polar line. Aur is called the polar liv= of point M, ~
and M the pole of line Aps. s
There is an easy-to-prove construction of the polar line when pole M is outside unit circle (see Fig 13a): it suffices
10 draw the two tangent lines from M to the unit circle and to join the tangency points.
Fundamental property: (Fig. 13 a} If points are aligned on a line L, their polar lines are intersecting in a point ~
M and reciprocally. Moreaver, L is the polar line Ay of M.

8.3. Reciprocal Polar Transform (R.P.T.)
A\)g-!.n\u" Auo ft'_.-: Jeterzec® e P:Qg.ueg

poles move on ¥ polar lines envelope ¥
Figure 13: ¥ is the R.P.T. of v- Fig.14: (Standard) Inversion
On the right: The R.P.T. of a conic curve is a conic curve. Transform: the different cases.

On the left: alignment of poles + intersection of polar lines;
(a sort of degenerate case of the figure on the right}.

Let us assume now that, instead of being the generic point of  line segment, M, is the generic point ofa "smoo't".h
enough” curve . Then straight lines Ay, envelope a curve, denoted ¥ (Fig. 13), which is called the Reciproeal Polar
Transform (R.P.T.) of 7.

This definition has no gymmetry appearance. Nevertheless, we have:

%



